Abstract

The mechanism of ring crack initiation in the Hertz indentation of monocrystalline silicon with no preexisting defect has been analyzed by controlled molecular dynamics. It has been found that microvoids that develop into a ring crack can be generated outside the outer periphery of the contact area between the silicon and an indenter, such that the static stress and dynamic stress associated with acoustic waves locally transform the monocrystal structure to a polycrystal one, and then the static stress causes cross slips at grain boundaries to cause microvoids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call