Abstract
The long lifetime and diffusion lengths of carriers and the defect tolerance of lead-halide perovskites are at the heart of their high efficiency in solar cell devices. Drastic photoluminescence quantum yield enhancements upon exposure of perovskites to molecular oxygen have been reported. Despite the general consensus about a direct role of oxygen in tuning the optical properties of perovskites, the microscopic origin of this effect is still under debate. On the basis of state-of-the-art density functional theory modeling, we propose a mechanism whereby oxygen effectively inactivates deep hole traps associated with iodide interstitials by forming moderately stable oxidized products. The small energy gain associated with trap passivation is in agreement with the reversibility of the process. Vibrational analysis points at the emergence of new active modes related to oxidized defect products, spanning the 300–700 cm–1 frequency range, which may be probed experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.