Abstract

The mechanism of resistance to quinclorac was investigated in a smooth crabgrass biotype [ Digitaria ischaemum (Schreb. ex Schweig) Schreb. ex Muhl] from Tulare County, California. Quinclorac (8.96 kg a.i. ha −1) had no effect ( P = 0.18) on the resistant (R) biotype, but reduced fresh weight of a susceptible (S) biotype by 93%. After treatment with 4.48 kg a.i. quinclorac ha −1, the S biotype produced about three times more ethylene than the R biotype and accumulated cyanide in tissues. Similar amounts of endogenous cyanide resulting from treatment with KCN reproduced quinclorac phytotoxicity. Pre-treatment with the ACC synthase inhibitor AVG reduced quinclorac phytotoxicity by 37% and ethylene production by 89%. These data suggest a target site-based mechanism of resistance involving stimulation of ACC synthesis and accumulation of cyanide. Also, the R biotype had four times more β-cyanoalanine synthase activity than the S biotype, suggesting a higher ability to detoxify cyanide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.