Abstract

Late watergrass [ Echinochloa phyllopogon (Stapf.) Koss.] is a major weed of California rice that has evolved P450-mediated metabolic resistance to multiple herbicides. Resistant (R) populations are also poorly controlled by the recently introduced herbicide penoxsulam. Ratios (R/S) of the R to susceptible (S) GR(50) (herbicide rate for 50% growth reduction) ranged from 5 to 9. Although specific acetolactate synthase (ALS) activity was 1.7 higher in R than in S plants, the enzyme in R plants was about 6 times more susceptible to the herbicide. R plants exhibited faster (2.8 times) oxidative [(14)C]-penoxsulam metabolism than S plants 24 h after treatment. Addition of malathion (P450 inhibitor) enhanced herbicide phytotoxicity and reduced penoxsulam metabolism in R plants. Tank mixtures with thiobencarb (can induce P450) antagonized penoxsulam toxicity in R plants, suggesting penoxsulam may be broken down by a thiobencarb-inducible enzyme. These results suggest E. phyllopogon resistance to penoxsulam is mostly due to enhanced herbicide metabolism, possibly via P450 monooxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.