Abstract

We found previously that 8-hydroxyguanine (oh 8Gua) endonuclease in E. coli is induced in response to oxidative stress in a fashion similar to the oxidative response of the Mn-superoxide dismutase (MnSOD). In this study, attempts were made to identify the genes involved in the co-regulation of E. coli endonuclease and MnSOD ( sodA). oh 8Gua nuclease is induced by molecular oxygen and a superoxide radical generator (paraquat) but not by H 2O 2, suggesting that the regulation of this endonuclease is dependent on SoxRS but independent of OxyR. This enzyme was induced by paraquat in all of the soxRS mutant strains used ( soxR −, soxS − and soxR c), whereas glucose-6-phosphate dehydrogenase (a member of the soxRS regulon) showed the expected responses; therefore, this possibility was excluded. The presence of metal chelators in the growth medium caused the induction of this enzyme, and this induction was suppressed by the addition of Fe ++. Consistent with this finding, this enzyme was expressed under anaerobiosis in all of the mutant strains of fnr in particular, as well as fur, arcA, and combinations thereof. These findings suggest that the oxidative regulation of oh 8Gua endonuclease is under control of fnr, fur, and arcA, where fnr plays a predominant role. The multiple involvement of regulatory genes as well as co-regulation with antioxidant enzyme will enhance the efficiency of cellular growth and survival in the aerobic environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.