Abstract

The mechanism of the nitrene-group transfer reaction from an organic azide to isonitrile catalyzed by a Zr(IV) d(0) complex carrying a redox-active ligand was studied by using quantum chemical molecular-modeling methods. The key step of the reaction involves the two-electron reduction of the azide moiety to release dinitrogen and provide the nitrene fragment, which is subsequently transferred to the isonitrile substrate. The reducing equivalents are supplied by the redox-active bis(2-iso-propylamido-4-methoxyphenyl)-amide ligand. The main focus of this work is on the mechanism of this redox reaction, in particular, two plausible mechanistic scenarios are considered: 1) the metal center may actively participate in the electron-transfer process by first recruiting the electrons from the redox-active ligand and becoming formally reduced in the process, followed by a classical metal-based reduction of the azide reactant. 2) Alternatively, a non-classical, direct ligand-to-ligand charge-transfer process can be envisioned, in which no appreciable amount of electron density is accumulated at the metal center during the course of the reaction. Our calculations indicate that the non-classical ligand-to-ligand charge-transfer mechanism is much more favorable energetically. Utilizing a series of carefully constructed putative intermediates, both mechanistic scenarios were compared and contrasted to rationalize the preference for ligand-to-ligand charge-transfer mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.