Abstract
Acrylamide is formed during the heating of food and is also found in cigarette smoke. It is classified by the International Agency for Research on Cancer as a probable human carcinogen (Group 2A). Glycidamide, an epoxide metabolite of acrylamide, is implicated in the mechanism of acrylamide carcinogenicity. Acrylamide causes oxidative DNA damage in target organs. We sought to clarify the mechanism of acrylamide-induced oxidative DNA damage by investigating site-specific DNA damage and reactive oxygen species (ROS) generation by a putative metabolite of acrylamide, acrylohydroxamic acid (AA). Our results, using 32P-5′-end-labeled DNA fragments, indicated that, although AA alone did not damage DNA, AA treated with amidase induced DNA damage in the presence of Cu(II). DNA cleavage occurred preferentially at T and C, and particularly at T in 5′-TG-3′ sequences, and the DNA cleavage pattern was similar to that of hydroxylamine. The DNA damage was inhibited by methional, catalase, and Cu(I)-chelator bathocuproine, suggesting that H2O2 and Cu(I) are involved in the mechanism of DNA damage induced by AA treated with amidase. In addition, amidase-treated AA increased 8-oxo-7,8-dihydro-2′-deoxyguanosine formation in calf thymus DNA, an indicator of oxidative DNA damage, in a dose-dependent manner. In conclusion, hydroxylamine, possibly produced from AA treated with amidase, was autoxidized via the Cu(II)/Cu(I) redox cycle and H2O2 generation, suggesting that oxidative DNA damage induced by ROS plays an important role in acrylamide-related carcinogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mutation Research - Genetic Toxicology and Environmental Mutagenesis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.