Abstract
The C-40 xanthophylls zeaxanthin and astaxanthin were confirmed to form radical cations, Car.+, in the electron-accepting solvent chloroform by direct excitation using subpicosecond time-resolved absorption spectroscopy in combination with spectroelectrochemical determination of the near-infrared absorption of Car.+. For the singlets, the S2(1B(u+) state and most likely the S(x)(3A(g)-) state directly eject electrons to chloroform leading to the rapid formation of Car.+ on a timescale of approximately 100 fs; the lowest-lying S1(2A(g)-) state, however, remains inactive. Standard reduction potential for Car.+ was determined by cyclic voltametry to have the value 0.63 V for zeaxanthin and 0.75 V for astaxanthin from which excited state potentials were calculated, which confirmed the reactivity toward radical cation formation. On the other hand, Car.+ formation from the lowest triplet excited state T1 populated through anthracene sensitization is mediated by a precursor suggested to be a solute-solvent complex detected with broad near-infrared absorption to the shorter wavelength side of the characteristic Car.+ absorption. However, ground state carotenoids are able to react with a secondary solvent radical to yield Car.+, a process occurring within 16 micros for zeaxanthin and within 21 mus for astaxanthin. Among the two xanthophylls together with lycopene and beta-carotene, all having 11 conjugated double bonds, zeaxanthin ranks with the highest reactivity in forming Car.+ from either the S2(1B(u+)) or the ground state. The effects of substituent groups on the reactivity are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.