Abstract
Methionine (Met) oxidation was observed during thermal degradation of methionine/glucose-derived Amadori rearrangement product (MG-ARP). The effects of oxidized methionine products, methionine sulfoxide (MetSO) and methionine sulfone (MetSO2), on pyrazine yields of the MG-ARP model were investigated. The pyrazine contents in the MG-ARP/Met and MG-ARP/MetSO models were found lower compared to those in the MG-ARP/MetSO2 model, and the inefficiency of pyrazine formation in the MG-ARP/Met model was proposed due to the fact that Met oxidation competitively inhibited the oxidation of dihydropyrazines for pyrazine formation in spite of relatively high methylglyoxal (MGO) content. The models of MGO mixed with Met, MetSO, or MetSO2 were established for further investigation of the mechanism for the involvement of Met oxidation in pyrazine formation. It was observed that the aldolization or carbonyl-amine reaction of MetSO with MGO was another important reason for the inhibition of pyrazine formation, except for the competitive inhibition of oxidative formation of MetSO on dihydropyrazine oxidation, and the adduct of MGO-MetSO was identified by MS/MS. These results also accounted for the phenomenon of low pyrazine yields but high yields of long-chain substituted pyrazines, which were converted from dihydropyrazines with the aldehyde involvement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.