Abstract

Protons are buffered and calcium is released by bone during metabolic acidosis. Incubation of neonatal mouse calvariae in acid medium causes net calcium efflux from bone and net proton influx into bone, just as metabolic acidosis does in vivo. To determine whether the calcium carbonate phase of bone mineral is solubilized with increasing proton concentrations, we cultured calvariae for 3 h in medium in which the saturation was varied by changing pH or calcium and phosphate concentrations. We determined the driving force for crystallization by calculating the Gibbs free energy of formation (DG). With alteration of the medium pH, calcium carbonate entry or loss from bone varied linearly with the initial DG for medium calcium carbonate (r = -0.745, n = 41, P less than 0.001) as it did with alteration of the medium calcium and phosphate (r = -0.665, n = 118, P less than 0.001). There was dissolution of calcium carbonate into medium that was unsaturated with respect to calcium carbonate, net flux ceased at saturation, and calcium carbonate entered bone from supersaturated medium, indicating that the medium is in equilibrium with the calcium carbonate phase of bone mineral. Neither the mineral phase brushite nor apatite was in equilibrium with the medium. These observations indicate that in vitro, acute proton-induced calcium efflux is due to dissolution of bone calcium carbonate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call