Abstract

The site-selectivity in the hydrogen transfer step(s) which result in propene and water loss from metastable oxonium ions generated as CH3CHO+CH2CH2CH3 have been investigated by deuteriumlabelling experiments. Propene elimination proceeds predominantly by transfer of a hydrogen atom from the initial propyl substituent to oxygen. However, the site-selectivity for this process is inconsistent with β-hydrogen transfer involving a four-centre transition state. The preference for apparent α- or γ-hydrogen transfer is interpreted by a mechanism in which the initial propyl cation accessible by stretching the appropriate bond in CH3CHO+CH2CH2CH3 isomerizes unidirectionally to an isopropyl cation, which then undergoes proton abstraction from either methyl group {CH3CHO+CH2CH2CH3→ CH3CHO+CH2CH2CH3→[CH3CHO +CH(CH3)2]→[CH3CHOH+ CH3CHCH2]}. This mechanism involving ion-neutral complexes can be elaborated to accommodate the minor contribution of expulsion of propene containing hydrogen atoms originally located on the two-carbon chain. Water elimination resembles propene loss insofar as there is a strong preference for selecting the hydrogen atoms from the α- and γ-positions of the initial propyl group. The bulk of water loss is explicable by an extension of the mechanism for propene loss, with the result that one hydrogen atom is eventually transferred to oxygen from each of the two methyl groups in the complex [CH3CHO +CH (CH3)2]. This site-selectivity is strikingly different from that (almost random participation of the seven hydrogen atoms of the propyl substituent) encountered in the corresponding fragmentation of the lower homologue CH2O+CH2CH2CH3. This contrast is explained in terms of the differences in the relative energetics and associated rates of the cation rearrangement and hydrogen transfer steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.