Abstract

We have studied the amorphization process of SnI4 up to 26.8 GPa with unprecedented experimental details by combining Sn and I K-edge x-ray absorption spectroscopy and powder x-ray diffraction. Standard and reverse Monte Carlo extended x-ray absorption fine structure (EXAFS) refinements confirm that the penta atomic SnI4 structural unit tetrahedron is a fundamental structural unit that appears preserved through the crystalline phase-I to crystalline phase-II transition that has been previously reported between 7 GPa and 10 GPa. Up to now, unexploited iodine EXAFS reveals to be extremely informative and confirms the progressive formation of iodine-iodine short bonds close to 2.85 Å. A coordination number increase of Sn in the crystalline phase-II region appears to be excluded, while the deformation of the tetrahedral units proceeds through a flattening that keeps the average I-Sn-I angle close to 109.5°. Moreover, we put in evidence the impact of pressure on the Sn near edge structure under competing geometrical and electronic effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.