Abstract

The mechanism by which the light absorption of cyanine and oxonol dyes changes in response to changes in transmembrane electrical potential has been studied. Trains of membrane potential steps produce changes in the intensity of light passing through glycerylmonooleate (GMO) bilayer lipid membranes (BLM) in the presence of these dyes. The size of the signal-averaged absorbance change for one of the cyanine dyes diS-C2-(5) is ∼10−5. The response time for the absorbance change of all of the dyes was ≦10 μsec. In order for an absorption signal to be observed, the concentration of dye on both sides of the membrane must be different. Since GMO bilayer membranes are permeable to the charged dyes that were studied, the dye concentration asymmetry necessary for the optical signal had to be maintained with a constant dc membrane potential, onto which the trains of potential steps were superimposed. The more hydrophobic dyes were the most permeant. Inclusion of cholesterol in the GMO bilayers decreased the permeance of the positively charged cyanine dyes, but increased the permeance of the negatively charged oxonol dyes. The magnitude and the size of the BLM absorbance change depended on the wavelength of illumination. Comparisons of the wavelength dependence of the BLM spectra with absorption difference spectra obtained with model membrane systems allow us to postulate a mechanism for a BLM absorbance change. For the cyanine and oxonol dyes, the data are consistent with an ON-OFF mechanism where a quantity of dye undergoes a rapid potential-dependent movement between a hydrocarbon-like binding site on the membrane and the aqueous salt solution near the membrane. For some dyes, which readily aggregate on the membrane, part of the absorbance change may possibly be explained by a potential dependent change in the state of aggregation of dye molecules localized on the membrane. Mechanisms involving a potential dependent change in the polarizability of the environment of membrane-localized dye molecules cannot be excluded, but seem unlikely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.