Abstract

Microplastics (MPs) are widely present in terrestrial ecosystems, but knowledge about the aging characteristics of MPs in different land-use types and their impact on soil organic carbon fractions is still limited. Polyethylene (PE) and biodegradable MPs (Poly propylene carbonate and Polybutylene adipate terephthalate synthetic material (PPC + PBAT, Bio)), at 0 %, 0.03 %, and 0.3 % (w/w) dosages, were added to grassland, farmland, and facility soils for eight-week incubation. The aging degree of MPs was explored by quantifying the carbonyl index (CI). Soil organic C fractions such as SOC, particulate organic carbon (POC), mineral-associated organic carbon (MAOC), and microbial-derived C were analyzed. MPs underwent rapid aging after incubation, and the CI value for 0.03 % PE-MPs increased from 0.05 to 0.27 (farmland) and 0.26 (facility) (p < 0.05). The aging degree of 0.03 % and 0.3 % Bio-MPs was most significant in grassland, with CI decreasing by 46.6 % and 69.0 %, respectively. The CI of MPs were negatively correlated with their dosage. The 0.03 % and 0.3 % PE-MPs decreased soil organic carbon (SOC) content by 7.4 % and 8.2 % in grassland, and 3.0 % and 6.0 % in the facility (p < 0.05). POC content of farmland and facility soil was negatively correlated with PE-MPs' CI (p < 0.05). The 0.03 % PE and Bio-MPs decreased fungal necromass C (FNC) by 0.40 and 0.05 g kg−1 in grassland and 0.48 and 0.21 g kg−1 in farmland. Besides, the dosage of MPs regulated FNC content through soil pH, nutrients, and extracellular enzyme activity, either directly or indirectly, ultimately affecting the soil C pool. Therefore, this study demonstrates that MPs strongly affect SOC dynamics by influencing soil microbial enzyme activity and fungal necromass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call