Abstract

T cell depletion with antithymocyte globulins (ATG) can be complicated by thrombopenia and hypercoagulability. The underlying mechanism is still unclear. We found that binding of ATG to platelets caused platelet aggregation, α-granule release, membrane phosphatidylserine exposure and the rapid release of procoagulant platelet microvesicles (MV). Platelet activation and MV release were complement-dependent and required membrane insertion of C5b-8 but not stable lytic pore formation by C5b-9. ATG also activated platelets via binding to the low-affinity Fc gamma receptor FcγRII. However, only complement inhibition but not blockade of FcγRII prevented MV release and subsequent thrombin activation in plasma. In 19 hematopoietic stem cell and kidney transplant patients, ATG treatment resulted in thrombopenia and increased plasma levels of d-dimer and thrombin-antithrombin complexes. Flow cytometric analysis of complement fragments on platelet MV in patient plasma confirmed dose-dependent complement activation by ATG. However, the rapid rise in MV numbers observed in vitro was not seen during ATG treatment. In vitro experiments suggested that this was due to adherence of C3b-tagged MV to red blood cells via complement receptor CR1. These data suggest a clinically relevant link between complement activation and thrombin generation and offer a potential mechanism underlying ATG-induced hypercoagulability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.