Abstract
G-protein-gated inwardly rectifying potassium (GIRK) channel activity is regulated by the membrane phospholipid, phosphatidylinositol-4,5-bisphosphate (PI 4,5P2). Constitutive activity of cardiac GIRK channels in atrial myocytes, that is implicated in atrial fibrillation (AF), is mediated via a protein kinase C-ε (PKCε)-dependent mechanism. The novel PKC isoform, PKCε, is reported to enhance the activity of cardiac GIRK channels. Here, we report that PKCε stimulation leads to activation of GIRK channels in mouse atria and in human stem cell-derived atrial cardiomyocytes (iPSCs). We identified residue GIRK4(S418) which when mutated to Ala abolished, or to Glu, mimicked the effects of PKCε on GIRK currents. PKCε strengthened the interactions of the cardiac GIRK isoforms, GIRK4 and GIRK1/4 with PIP2, an effect that was reversed in the GIRK4(S418A) mutant. This mechanistic insight into the PKCε-mediated increase in channel activity because of GIRK4(S418) phosphorylation, provides a precise druggable target to reverse AF-related pathologies due to GIRK overactivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.