Abstract

Photoinhibition of photosynthesis is manifested at the level of the leaf as a loss of CO2 fixation and at the level of the chloroplast thylakoid membrane as a loss of photosystem II electron-transport capacity. At the photosystem II level, photoinhibition is manifested by a lowered chlorophyll a variable fluorescence yield, by a lowered amplitude of the light-induced absorbance change at 320 nm (ΔA320) and 540-minus-550 nm (ΔA540-550), attributed to inhibition of the photoreduction of the primary plastoquinone QA molecule. A correlation of the kinetics of variable fluorescence yield loss with the inhibition of QA photoreduction suggested that photoinhibited reaction centers are incapable of generating a stable charge separation but are highly efficient in the trapping and non-photochemical dissipation of absorbed light. The direct effect of photoinhibition on primary photochemical parameters of photosystem II suggested a permanent reaction center modification the nature of which remains to be determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call