Abstract

New evidence on the chloride requirement for photosynthetic O2 evolution has indicated that Cl- facilitates oxidation of the manganese cluster by the photosystem II (PSII) Tyr-Z+ radical. Illumination above 250 K of spinach PSII centers which are inhibited in O2 evolution by either Cl- depletion or F- substitution produces a new EPR signal which has magnetic characteristics similar to one recently discovered in samples inhibited by depletion of Ca2+ only [Boussac et al. (1989) Biochemistry 28, 8984; Sivaraja et al. (1989) Biochemistry 28, 9459]. The physiological roles of Cl- and Ca2+ in water oxidation are thus linked. The characteristics include a nearly isotropic g = 2.00 +/- 0.005, a symmetric line shape with line width = 16 +/- 2 mT, almost stoichiometric spin concentration relative to Try-D+ = 0.6 +/- 0.3 spin/PSII, very rapid spin relaxation at all temperatures measured down to 6 K, and an undetectable change in magnetic susceptibility upon formation (less than 1 mu B2). The signal appears to originate from a spin doublet (radical) in magnetic dipolar contact with a transition-metal ion, most probably a photooxidized protein residue within 10 A of the Mn cluster (Mn-proximal radical). It is distinct from the three other protein-bound radical-type electron donors found in the PSII reaction center: Tyr-D+, Tyr-Z+, and C+. This signal photoaccumulates to a stable level under continuous illumination at 270 K and decays only after illumination stops.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call