Abstract

Very few aqueous medium experimental studies focus on the molecular interaction mechanism between the adsorbent and the adsorbate. Herein, we investigate the adsorption of two organic pollutants, phenol and p-nitrophenol (PNP) in dilute aqueous solution conditions on kaolinite (001) surface through classical molecular dynamics (MD) simulations. The present investigation addresses both adsorption isotherms and mechanistic issues. MD simulations at different solute concentrations generated density profiles and, thereby, adsorption isotherms. The data generated for phenol adsorption fitted both Langmuir and Freundlich isotherm models equally well. Alternatively, PNP adsorption data on the kaolinite surface followed the Langmuir model better. Overall, phenol exhibits a higher adsorption capacity on kaolinite than PNP. These results support the experimental observations made in earlier publications in the literature. Radial distribution functions (RDF) between various atom types on the adsorbent and molecules in the solution phase point toward hydrogen bond-dominated interaction mechanisms for organic pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.