Abstract

Development of efficient catalysts for peroxymonosulfate (PMS) activation and further understanding its mechanism on organic pollutants degradation is of significant importance for advanced oxidation processes (AOPs). Herein, hollow (Co, Mn)3O4 catalysts were synthesized by calcination of Co, Mn containing metal-organic frameworks (MOFs) and further used to evaluate the effectiveness of organic pollutants (Bisphenol A (BPA), atrazine (ATZ), and diethyl phthalate (DEP)) degradation by PMS activation. The PMS utilization efficiency in (Co, Mn)3O4/PMS system (36.4%) was estimated to be 28.0% and 43.8% higher than that of Co3O4/PMS and Mn5O8/PMS system, respectively. Notably, the metal leaching in (Co, Mn)3O4/PMS system was significantly suppressed. The utilization efficiency also reveals an inverse proportionality relationship with BPA mineralization but decreases with increasing initial pH value. A synergy between oxides of Co and Mn was perceived to enhance PMS utilization efficiency and BPA degradation. The results indicate enhanced catalytic performance with (Co, Mn)3O4 compared to Co3O4 derived from Co-MOF and other reported catalysts, with 99% of BPA degradation within 4 min. The oxidation mechanism was then proposed based on the electron paramagnetic resonance (EPR) and XPS results. Our findings might have contributed to designing heterogeneous catalysts for efficient PMS utilization in AOPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.