Abstract

To elucidate the bonding mechanism of a non-polar perfluoropolyether lubricant (PFPE lube) under ultraviolet (UV) irradiation, the UV wavelength ranges in which photoelectrons emanate were identified using photoelectron spectroscopy in air (PESA), and the bonding behavior of the lube at various UV wavelengths was studied. The results showed that photoelectrons emanated from magnetic disk substrates at wavelengths of 240 nm or less and the lube was bonded to the substrate in the wavelength range where photoelectrons were emanated. For comparison, Si, SiO2/Si, and Si3N4/Si were also used as substrate; the Si substrate which emanated the highest photoelectron intensity showed the highest bonded ratio of the lube. The lube, however, also bonded to the SiO2/Si and Si3N4/Si substrates under UV irradiation at 222 nm, where photoelectrons do not emanate from the substrates. These observations suggest that the bonding mechanism between the PFPE chains and the carbon overcoat (COC) surfaces under UV irradiation was affected by factors other than photoelectrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.