Abstract

Fundamental studies on the availability of oxygen from the decomposition of H(2)O(2), in vivo, by Xanthomonas campestris, when H(2)O(2) is used as an oxygen source are presented. It was found that the H(2)O(2) added extracellularly (0.1-6 mM) was decomposed intracellularly. Further, when H(2)O(2) was added, the flux of H(2)O(2) into the cell, is regulated by the cell. The steady-state H(2)O(2) flux into the cell was estimated to be 9.7 x 10(-8) mol m(-2) s(-1). In addition, it was proved that the regulation of H(2)O(2) flux was coupled to the protonmotive force (PMF) using experiments with the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), which disrupts PMF. The coupling constant between the rate of free energy availability from PMF and the rate of reduction of H(2)O(2) flux, was found to be 46.4 mol m(-2) s(-1) J(-1) from simulations using a developed model. Also, the estimated periplasmic catalase concentration was 1.4 x 10(-9) M.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.