Abstract
This article proposes a variational approach to describe the evolution of organization of complex systems from first principles, as increased efficiency of physical action. Most simply stated, physical action is the product of the energy and time necessary for motion. When complex systems are modeled as flow networks, this efficiency is defined as a decrease of action for one element to cross between two nodes, or endpoints of motion—a principle of least unit action. We find a connection with another principle, that of most total action, or a tendency for increase of the total action of a system. This increase provides more energy and time for minimization of the constraints to motion to decrease unit action, and therefore, to increase organization. Also, with the decrease of unit action in a system, its capacity for total amount of action increases. We present a model of positive feedback between action efficiency and the total amount of action in a complex system, based on a system of ordinary differential equations, which leads to an exponential growth with time of each and a power law relation between the two. We present an agreement of our model with data for core processing units of computers. This approach can help to describe, measure, manage, design, and predict future behavior of complex systems to achieve the highest rates of self‐organization and robustness. © 2014 Wiley Periodicals, Inc. Complexity 21: 18–28, 2015
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.