Abstract
Polymer films made with photosensitive chromophore protein bacteriorhodopsin (BR) from the extreme halophile Halobacterium salinarium as well as films made with BR derivatives exhibit a nonlinear photoinduced anisotropy. Two different methods can be used to induce anisotropy in polymer BR films. The first method is based on the anisotropic properties of the initial form of the photocycle, BR570 (B-type anisotropy). Another method is based on the anisotropic properties of the longest-lived photocycle intermediate M412 (M-type anisotropy). CW gas lasers were employed to induce a reversible anisotropy in polymer BR films. Nonlinear photoinduced anisotropy is discussed in the context of a model for the anisotropic photoselection of BR molecules under linearly polarized light. A comparison of the experimental dependencies of nonlinear photoinduced anisotropy on laser intensity with similar calculated dependencies enables one to determine the molecular dichroism of BR and its derivatives not only for the initial form of the photocycle, B but also for the longest-lived intermediate M. Here we present the data showing the correlation between the laser induced nonlinear anisotropic properties and chromophore/protein interactions in BR. The effect of polymer binder on the nonlinear photoanisotropic properties of polymer BR films is also described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.