Abstract
Within the context of Ni photoredox catalysis, halogen atom photoelimination from Ni has emerged as a fruitful strategy for enabling hydrogen atom transfer (HAT)-mediated C(sp3)-H functionalization. Despite the numerous synthetic transformations invoking this paradigm, a unified mechanistic hypothesis that is consistent with experimental findings on the catalytic systems and accounts for halogen radical formation and facile C(sp2)-C(sp3) bond formation remains elusive. We employ kinetic analysis, organometallic synthesis, and computational investigations to decipher the mechanism of a prototypical Ni-catalyzed photochemical C(sp3)-H arylation reaction. Our findings revise the previous mechanistic proposals, first by examining the relevance of SET and EnT processes from Ni intermediates relevant to the HAT-based arylation reaction. Our investigation highlights the ability for blue light to promote efficient Ni-C(sp2) bond homolysis from cationic NiIII and C(sp2)-C(sp3) reductive elimination from bipyridine NiII complexes. However interesting, the rates and selectivities of these processes do not account for the productive catalytic pathway. Instead, our studies support a mechanism that involves halogen atom evolution from in situ generated NiII dihalide intermediates, radical capture by a NiII(aryl)(halide) resting state, and key C-C bond formation from NiIII. Oxidative addition to NiI, as opposed to Ni0, and rapid NiIII/NiI comproportionation play key roles in this process. The findings presented herein offer fundamental insight into the reactivity of Ni in the broader context of catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.