Abstract

Objective: To explore the mechanism of nerve growth factor (NGF) in the skeletal muscle fiber remodeling in ischemic limbs during therapeutic angiogenesis. Methods: Eighteen female mice with SPF grade, 6 weeks old and 25-30 g weighed were randomly allocated to sham-operated group (n=6), blank control group (n=6) and NGF gene transfection group (n=6). The left hindlimb ischemia models were established by ligating the femoral artery in blank control group and NGF gene transfection group. Seven days after the operation, mice in the three groups were separately injected with normal saline, empty plasmids, and NGF plasmids. Gastrocnemius of left hindlimbs was harvested after the blood perfusion assessment of the ischemic limb on the 21st postoperative day. The gastrocnemius muscle specimens were stained with HE, CD31 and proliferating cell nuclear antigen (PCNA) immunohistochemistry staining, the mRNA expressions of myosin heavy chain-Ⅰ(MHC-Ⅰ), MHC-Ⅱa and MHC-Ⅱb were measured by real-time PCR, and the protein level of NGF and peroxisome proliferator-activated receptors-β/δ (PPAR β/δ) were detected by Western blot. The expression of cytochrome C oxidase (COX), isocitrate dehydrogenase (IDH) and adenosine triphosphate (ATP) were examined by enzyme-linked immunosorbent assay (ELISA). Results: On the 21st day after operation, the blood perfusion of the ischemic limb in NGF gene transfection group was (195.70±9.99)PU, which was lower than that in sham-operated group (312.15±17.32)PU (P=0.001), while it was higher than that in blank control group (82.11±8.55)PU (P=0.001). The degree of muscle atrophy in the NGF gene transfection group was lower than that in the blank control group. The capillary density of NGF gene transfection group (0.34±0.05) was higher than that of sham-operated group (0.11±0.03) and blank control group (0.27±0.04) (P<0.05). The endothelial cell proliferation index in NGF gene transfection group (0.39±0.19) was significantly higher than that in sham-operated group (0.18±0.01) and blank control group (0.25±0.14) (P<0.05). The expression of NGF, PPAR β/δ, COX, IDH, ATP, and MHC-Ⅰ mRNA in NGF gene transfection group were significantly higher than those in sham-operated group and blank control group (P<0.05). Conclusions: NGF gene transfection can promote angiogenesis in the ischemic limbs of mice, increase the blood perfusion, and thus induce the remodeling of skeletal muscle fibers to type Ⅰ. This process may be related to NGF-induced PPAR β/δ expression and promote the cellular aerobic metabolism in skeletal muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.