Abstract

Using gas-liquid segmented micromixers to prepare nanoparticles that have a homogeneous particle size, controllable shape, and monodispersity advantages. Although nanoparticle aggregation within a microfluid has been shown to be affected by the shear effect, the shear effect triggering conditions in gas-liquid two-phase flow is unclear and the aggregation behavior of nanoparticles under the shear effect is difficult to predict, resulting in uncontrollable physical and chemical properties of nanoparticle aggregates. In this study, a numerical simulation of nanoparticle aggregation in gas-liquid two-phase flow under the shear effect is performed using the CFD-DEM method. Then, the effects of total flow rate, gas-liquid two-phase flow ratio, and particle volume fraction on particle aggregation were analyzed to achieve control of particle aggregation shape and size. Meanwhile, the triggering mechanism of the shear effect and the mechanism of the shear effect on the aggregation of nanoparticles were clarified. The results show that increasing the total flow rate or decreasing the gas-liquid two-phase flow rate ratio can induce the shear effect, which reduces the particle aggregation size and makes the morphology tend to be spherical. Moreover, increasing the particle volume fraction, and total flow rate or decreasing the gas-liquid two-phase flow rate ratio also increases the number of particle collisions and induce interparticle adhesion. Hence, particle adhesion and the shear effect compete with each other and together affect particle aggregation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.