Abstract

Atrial structural remodeling takes on a critical significance to the occurrence and maintenance of atrial fibrillation (AF). As revealed by recent data, insulin-like growth factor-1 receptor (IGF-1R) plays a certain role in tissue fibrosis. In this study, the mechanism of IGF-1R in atrial structural remodeling was examined based on in vivo and in vitro experiments. First, cluster analysis of AF hub genes was conducted, and then the molecular mechanism was proposed by which IGF-1R regulates myocardial fibrosis via the PI3K/Akt/FoxO3a pathway. Subsequently, the mentioned mechanism was verified in human cardiac fibroblasts (HCFs) and rats transduced with IGF-1 overexpression type 9 adeno-associated viruses. The results indicated that IGF-1R activation up-regulated collagen Ⅰ protein expression and Akt phosphorylation in HCFs and rat atrium. The administration of LY294002 reversed the above phenomenon, improved the shortening of atrial effective refractory period, and reduced the increased incidence of AF and atrial fibrosis in rats. The transfection of FoxO3a siRNA reduced the anti-fibrotic effect of LY294002 in HCFs. The above data revealed that activation of IGF-1R takes on a vital significance to atrial structural remodeling by facilitating myocardial fibrosis and expediting the occurrence and maintenance of AF through the regulation of the PI3K/Akt/FoxO3a signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.