Abstract

The mouse L-cell line LD maintains its mitochondrial DNA genome in the form of a head-to-tail unicircular dimer of the monomeric 16,000 base-pair species. This situation permits a comparison of the mechanism of replication of this dimeric molecule with our previous studies of replication of monomeric mouse L-cell mitochondrial DNA. Whereas monomeric mitochondrial DNA requires about one hour for a round of replication, the dimeric molecule requires almost three hours. Denaturing agarose gel electrophoretic analyses of replicative intermediates reveals several discrete size classes of partially replicated daughter strands of dimeric mitochondrial DNA. This suggests that replication occurs with specific discontinuities in the rate of daughter strand synthesis. The strand specificity of these daughter strands was determined by hybridization with 32P-labeled DNA representing either the heavy or light strand mitochondrial DNA sequence. The sizes and strand specificities of these discrete daughter strands indicate that the same set of control sequences is functional in both dimer and monomer mitochondrial DNA replication. Immediately following a round of replication, the majority of dimeric mitochondrial DNA molecules contain displacement loops, as assessed by their sensitivity to nicking within the displaced DNA strand by single-strand DNA specific S 1 nuclease under conditions which leave supercoiled DNA intact. This result is in contrast with the conformation of newly replicated monomeric mitochondrial DNA molecules, which lack both superhelical turns and displacement loops. This indicates that dimeric mitochondrial DNA proceeds through a different series of post-replicative processing steps than does monomeric mitochondrial DNA. We postulate that intermediates at late stages of dimeric mitochondrial DNA replication contain displacement loops which remain intact following closure of the full-length daughter strands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.