Abstract

In the novel replication mechanism of closed circular mouse L-cell mitochondrial DNA synthesis one strand of the duplex (the heavy-strand) is initiated at a defined origin and proceeds unidirectionally. Synthesis of the complementary light-strand is initiated at a different origin, located approximately two-thirds genome length from the heavy-strand origin, and also proceeds unidirectionally. The initiation of light-strand synthesis does not occur until synthesis of the heavy-strand has extended past the light-strand origin region. One intriguing consequence of this asynchrony is that the heavy-strand origin functions in a DNA duplex, while the light-strand origin functions as a single-stranded template. In order to obtain the precise location of the light-strand origin we have isolated replicative molecules in which light-strand synthesis has begun and subjected them to digestion by a combination of the single-strand specific nuclease S 1 and various restriction cndonucleases. By comparison of the sizes of the duplex fragments thus generated with those produced by cleavage of non-replicating molecules cleaved with the same enzymes we have located the 5′-end of daughter light-strands at a position 55 to 90 nucleotides from a HpaI cleavage site 0.67 genome length from the heavy-strand origin. The nucleotide sequence of a 318-base region surrounding this site, determined by chemical sequencing techniques, possesses the symmetry required for the formation of three hairpin loops. The most striking of these has a stem consisting of 12 consecutive basepairs and a 13-base loop. In the heavy-strand template, this loop contains 11 consecutive thymidine nucleotides. This light-strand origin region has been found to possess a remarkable degree of homology with several other prokaryotic and eukaryotic origin-related sequences, particularly those of the øX174 A region and the simian virus 40 EcoRII G fragment. It has previously been shown that mouse mitochondrial DNA contains alkali-labile sites, which are presumably due to the presence of ribonucleotides incorporated into the DNA. A cluster of sites, representing eight adjacent ribonucleotides, has been located in mature light strands at or near the origin of light-strand synthesis. The retention of ribonucleotides at this specific location may reflect inefficient removal of an RNA primer at the light-strand origin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call