Abstract

for saving energy and protecting the environment, natural gas has been widely used in internal combustion engines, which makes the study on the ignition characteristics of natural gas/diesel mixtures important. In this work, the effects of trace methane addition on the ignition delay of n-heptane/air mixtures are numerically studied using a detailed n-heptane mechanism under marine engine-like conditions. The simulations are carried out based on the software CHEMKIN-PRO 18.0 with a closed homogeneous reactor. Results show that the prolonged ignition delay times (IDs) of n-heptane/air mixtures are observed over the whole initial temperature range after methane is added, and the increment of IDs in the negative temperature coefficient (NTC) region is significantly higher than that in high temperature region. The sensitivity analysis indicates that both inhibition and promotion effects of important elementary reactions on n-heptane oxidation are weakened because of methane addition. However, the weakening influence on the promoting effect is more prominent. In addition, the inhibition effect of some elementary reactions that are related to the methane oxidation is enhanced. Thus, the IDs of n-heptane/air mixture are prolonged. The analyses of reaction rate of production (ROP) show that the both the production and consumption rates of key radicals decrease significantly in NTC region after methane is added, but it is negligible in the high temperature region. The study can extend the theoretical basis of ignition characteristics of methane/n-heptane blends under elevated temperatures and pressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.