Abstract

We investigated the mechanism of membrane phospholipid degradation during reperfusion of ischemic myocardium using isolated and perfused rat hearts. Thirty min of myocardial reperfusion after 30 min of normothermic global ischemia resulted in a significant decrease of phosphatidylcholine (PC) content associated with a small but significant increase in lysophosphatidylcholine (LPC) content. Myocardial ischemia for up to 60 min caused no significant loss of any of the major phospholipids. Isotopic incorporation of [14C]arachidonic acid (AA) as well as [3H]-glycerol into PC was significantly attenuated in the ischemic-reperfused heart compared with the normally perfused heart, suggesting that both reacylation and de novo pathways for PC synthesis were inactivated during reperfusion. In the heart prelabeled with [14C]AA, the radiolabeled PC was decreased significantly during reperfusion, associated with a small but significant increase in [14C]AA accumulation. The decreases of PC content and incorporation of [14C]AA into PC, as well as the increases of LPC content and the [14C]AA during reperfusion, were prevented by reperfusion with low Ca2+ (50 microM) buffer or by pretreatment with trifluoperazine (10 microM) or mepacrine (50 microM), but not with verapamil (1 microM). The inhibition of loss of PC was associated with significant diminution of creatine kinase release from the reperfused hearts. The present study indicates that the net loss of membrane phospholipids, especially with respect to PC during reperfusion, may result from 1) inhibition of reacylation of AA, 2) inhibition of de novo synthesis, and 3) stimulation of phospholipase activity. These results are consistent with an influx of Ca2+, although other interpretations are also possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.