Abstract

This study focuses on the cryogenic mechanical property of carbon fibre reinforced epoxy resin composite (CFRP) unidirectional laminate, and the cryogenic evolution mechanism is discussed from the microstructural perspective of resin free volume and intermolecular forces. The primary transition temperature (147 °C) and the secondary transition temperature (−25 °C) is identified through dynamic mechanical analysis. As the cryogenic condition (−196 °C) is significantly lower than the temperature of main-chain segmental and micro-structure unit motion, the resin molecular segments are frozen, free volume fraction and resin toughness are reduced, thus the brittleness increases. These effects reduce the cryogenic failure strain of CFRP at break by 43.7% compared to room temperature, resulting in a smoother fracture surface morphology. Resin molecules under cryogenic condition have higher packing density, stronger intermolecular forces, which increase the strength and modulus of both resin and CFRP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.