Abstract

Increased jitter caused by recording marks becoming deformed in an accelerated environmental test was investigated and a model where the change in the speed of crystallization is affected by passive oxidation on the amorphous surface of the recording layer was devised. The model clarified the mechanism by which deformation in the marks caused increased jitter in the accelerated environmental test. Adding nitrogen into the gas when sputtering the protective layer adjacent to the recording film was investigated. It was confirmed that a prototype disk with this protective layer has decreased jitter after a 500 h accelerated test and superior power margins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.