Abstract

Metastasis of ovarian cancer is regulated by microRNAs. This study focused on the effects of miR-30a-5p on ovarian cancer migration and invasion. Our results showed that the miR-30a-5p and mucin type O-glycan biosynthesis are closely related to ovarian cancer, and that miR-30a-5p was downregulated in ovarian cancer cells. miR-30a-5p overexpression reduced cell viability and inhibited migration and invasion in HO-8910 and HO-8910PM cells. S phase kinase-associated protein 2 (SKP2), B cell lymphoma 9 (BCL9), and NOTHC1 are direct target genes of miR-30a-5p. MTDH, SKP2, BCL9, and NOTCH1 genes were overexpressed in ovarian cancer cells, and they are direct target genes of miR-30a-5p. miR-30a-5p overexpression inhibited epithelial-mesenchymal transition (EMT) process, while upregulation of SKP2, BCL9, and NOTCH1 gene expression levels reduced the inhibition of EMT process by miR-30a-5p. miR-30a-5p was lowly expressed in ovarian cancer, and such a phenomenon is related to ovarian cancer metastasis. miR-30a-5p might inhibit the migration and invasion of ovarian cancer cells by downregulating the expression of SKP2, BCL9, and NOTCH1 genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call