Abstract

Tubulin is an alphabeta heterodimer. Both the alpha and beta polypeptides exist as multiple isotypes. Although tubulin was generally thought to exist only in the cytoplasm, we have previously reported the presence of the betaII isotype of tubulin in the nuclei of cultured rat kidney mesangial cells, smooth-muscle-like cells that reside in the glomerular mesangium; nuclear betaII exists as an alphabetaII dimer, capable of binding to colchicine, but in non-microtubule form [Walss et al., 1999: Cell Motil. Cytoskeleton 42:274-284]. We have now investigated the nature of the process by which alphabetaII enters the nuclei of these cells. By micro-injecting fluorescently labeled alphabetaII into mesangial cells, we found that alphabetaII was present in the nuclei of cells only if they were allowed to go through mitosis. In contrast, there were no circumstances in which microinjected fluorescently labeled abetaII or alphabetaIV dimers entered the nuclei. These findings, together with the absence of any nuclear localization signal in alphabetaII, strongly favor the model that alphabetaII, rather than being transported into the intact nucleus, co-assembles with the nucleus at the end of mitosis. Our results also indicate that the nuclear localization mechanism is specific for alphabetaII. This result raises the possibility that alphabetaII may have a specific function that requires its presence in the nuclei of cultured rat kidney mesangial cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.