Abstract

Coenzyme B12 (adenosylcobalamin = AdoCbl)-dependent enzymes catalyze complex molecular transformations by employing radical chemistry. The initial step in the native catalytic cycle, upon substrate binding, involves homolytic cleavage of the Co–C bond of AdoCbl to form the Co(II)/Ado• radical pair (RP). Formation of Co(II)/Ado• is subsequently coupled with H atom abstraction from the substrate. Interestingly, these same RPs can be generated upon light absorption without presence of a substrate. Herein, the photochemistry associated with the mechanism of Co–C bond photocleavage inside the AdoCbl-dependent ethanolamine ammonia-lyase (EAL) was investigated using a combined time-dependent density functional theory and molecular mechanics (TD-DFT/MM) approach. Excited state potential energy surfaces (PESs), constructed as a function of axial bond lengths, were used to understand the photocleavage of the Co–C bond and to elucidate the mechanism of photodissociation for AdoCbl inside the enzyme. The S1 PES is ch...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.