Abstract

Abstract This study investigated the mechanism of lactose assimilation in Nannochloropsis oceanica for dairy-wastewater bioremediation and co-production of valuable feed/food ingredients in a circular dairy system (β-galactosidase and omega-3 polyunsaturated fatty acids). Mixotrophic cultivation was found to be mandatory for lactose assimilation in N. oceanica, with biomass production in mixotrophic cultures reaching a fourfold increase over that under heterotrophic conditions. Under mixotrophic conditions, the microalgae were able to produce β-galactosidase enzyme to hydrolyse lactose, with maximum extracellular secretion recorded on day 8 of growth cycle at 41.47 ± 0.33 U gbiomass−1. No increase in the concentration of glucose or galactose was observed in the medium, confirming the ability of microalgae to indiscriminately absorb the resultant monosaccharides derived from lactose breakdown. Population analysis revealed that microalgae cells were able to maintain dominance in the mixotrophic culture, with bacteria accounting for < 12% of biomass. On the other hand, under heterotrophic conditions, native bacteria took over the culture (occupying over 95% of total biomass). The bacteria, however, were also unable to effectively assimilate lactose, resulting in limited biomass increase and negligible production of extracellular β-galactosidase. Results from the study indicate that N. oceanica can be effectively applied for onsite dairy wastewater treatment under strict mixotrophic conditions. This is commercially disadvantageous as it rules out the possibility of deploying heterotrophic fermentation with low-cost bioreactors and smaller areal footprint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call