Abstract

The Caco-2 model system (Hidalgo et al., Gastroenterology, 96:736-749, 1989), which is a monolayer of polarized intestinal epithelial cells grown onto a porous polycarbonate membrane, was used to study the mechanism of transcellular transport of an antihypertensive agent, L-alpha-methyldopa (L-alpha-MD). The results showed that the transport of L-alpha-MD was pH, glucose, concentration, and temperature dependent, and it could be inhibited by metabolic inhibitors (e.g., 2,4-dinitrophenol) and by amino acids (e.g., L-phenylalanine) which have an affinity for the large neutral amino acid (LNAA) carrier. In addition, the apparent kinetic constants describing the transcellular transport of L-alpha-MD were altered depending on the time interval between feeding the cells and the transport experiments (postfeeding time, PFT). The apparent maximum carrier flux (Jmax) of L-alpha-MD was significantly increased (from 155 to 547 pmol/mg protein/min) when PFT was prolonged from 8.5 to 56 hr. These results indicated that the transcellular transport of L-alpha-MD through the polarized Caco-2 cell monolayer was carrier mediated via the LNAA carrier. The similarities in the characteristics of L-alpha-MD transport exhibited by the Caco-2 model system and other intestinal models in vitro further substantiate the usefulness of this cell culture model for studying the intestinal transport of nutrients and drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.