Abstract

Cisplatin is a common metal platinum complex. The platinum atom in the molecule is of great significance to its antitumor effect. Clinically, it can show curative effect on a variety of solid tumors. However, cisplatin has certain adverse effects in treatment, one among which is acute renal injury (AKI). Except for the nuclear DNA damage caused by cisplatin, damage of organelles, and cytoplasm also contribute to side effects. Endoplasmic reticulum stress, mitochondrial apoptosis pathway or cascade reaction caused by complement and caspase protein also play important roles in cisplatin induced renal injury. Therefore, the damage studies of organelles and cytoplasm are also necessary for exploring adverse effects of cisplatin. This paper reviews the damage of endoplasmic reticulum, mitochondria, and indirect DNA apoptosis pathways induced by cisplatin. It also explains in detail why cisplatin is easy to cause kidney damage. Deep understanding of such interactions could be helpful to exploit better drugs which would minimize kidney injury and maximize anti-tumor effects of cisplatin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.