Abstract
Isoniazid (INH) is a first-line anti-tuberculosis drug. INH has been detected in surface waters which may create a risk to aquatic organisms. In this study, the hepatotoxicity of INH was elucidated using zebrafish. The liver morphology, transaminase level, redox-related enzyme activity, reactive oxygen species (ROS) content and mRNA levels of liver injury-related genes were measured. The results showed that INH (4, 6 mM) significantly caused liver atrophy and increased levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in zebrafish. INH (6 mM) led to decreased catalase (CAT) activity, glutathione peroxidase (GPx) activity and glutathione (GSH) content but increased ROS and malondialdehyde (MDA) levels. Moreover, INH (6 mM) decreased expression levels of miR-122 and pparα but increased mRNA levels of ap-1 and c-jun. Furthermore, mRNA levels of factors related to endoplasmic reticulum stress (ERS) (grp78, atf6, perk, ire1, xbp1s and chop), apoptosis (bax, cyt, caspase-3, caspase-8 and caspase-9) and the Nrf2 signalling pathway (nrf2, ho-1, nqo1, gclm and gclc) were significantly upregulated. INH may act on hepatotoxicity in zebrafish by increasing ROS content, which weakens the antioxidant capacity, leading to ERS, cell apoptosis and liver injury. In addition, the Nrf2 signalling pathway is activated as a stress compensation mechanism during INH-induced liver injury, but it is not sufficient to counteract INH-induced hepatotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.