Abstract

ABSTRACTThe mechanism of an iron‐catalyzed C—H alkenylation of pivalophenone derivatives with unsymmetric internal alkynes is investigated in details by means of density functional theory calculations. It is shown that the reaction begins with two consecutive ligand exchanges, followed by a fast and reversible oxidative addition C—H activation step. Next, an alkyne insertion into the Fe—H bond, two isomerization steps, and a reductive elimination afford the final product. The reductive elimination is the turnover‐limiting step of the process, and also determines the regiochemical outcome of the reaction. The origin of the regioselectivity is proposed to be the steric repulsion between the bulky trimethylsilyl group and the aromatic fragment in the reductive elimination step leading to the not observed regioisomer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.