Abstract
The synthesis and membrane activity of a suite of linear oligoesters containing a common diphenylacetylene unit core and differing in the hydroxyl terminus are reported. Active compounds formed high-conductance channels efficiently in both vesicle and planar bilayers, with one compound showing a very unusual slow loss of transport activity over a 20-30 min period. Steady-state and time-resolved fluorescence studies establish the rapid partition of active compounds to the bilayer and identify at least three types of membrane-associated species by their differing fluorescence lifetimes. The change in the distribution of species is correlated with the slow loss of activity. The results are interpreted in terms of an aggregate within a single bilayer leaflet that is nonetheless competent to transport ionic species through the bilayer. The properties of such structures, revealed by these compounds, appear to be consistent with commonly observed behaviors of other synthetic ion channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.