Abstract

Using network pharmacology to explore the mechanism of the 'invigorating qi and promoting blood circulation' drug pair Ginseng-Danshen (Salvia miltiorrhiza) on treatment of ischemic heart disease (IHD). The chemical constituents of ginseng and Danshen drug pair were identified by searching the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the potential targets of the pair were identified. The pharmacodynamics of the pair was analyzed using network pharmacology. The targets of IHD were identified by database screening. Using protein-protein interaction network, the interaction targets of Ginseng-Danshen on IHD were constructed. A "constituent-target-disease" interaction network was constructed using Cytoscape software, Gene Ontology (GO) term enrichment analysis and biological pathway enrichment analysis were carried out, and the mechanism of improving myocardial ischemia by the Ginseng-Danshen drug pair was investigated. Seventeen active constituents and 53 targets were identified from ginseng, 53 active constituents and 61 targets were identified from Danshen, and 32 protein targets were shared by ginseng and Danshen. Twenty GO terms were analyzed, including cytokine receptor binding, cytokine activity, heme binding, and antioxidant activity. Sixty Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways were analyzed, including phosphatidylinositol 3-kinase-serine-threonine kinase (PI3K-AKT) signaling pathway, p53 signaling pathway, interleukin 17 signaling pathway, tumor necrosis factor signaling pathway, and the advanced glycation end product (AGE)-the receptor for AGE (RAGE) signaling pathway in diabetic complications. The specific mechanism of Ginseng-Danshen drug pair in treating IHD may be associated with improving the changes of metabolites inbody, inhibiting the production of peroxides, removing the endogenous oxygen free radicals, regulating the expression of inflammatory factors, reducing myocardial cell apoptosis and promoting vascular regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call