Abstract

There is an interactive effect between ammonium perchlorate (AP) and aluminum (Al) powder during the combustion process of composite solid propellants, but the mechanism of this effect is still lacking. Using quantum chemical methods, we investigated this mechanism from a molecular perspective. The interaction process between Al and AP was analyzed by comparing the chemical bond changes between the atoms during the reaction process of the Al/AP system and the AP unimolecular thermal decomposition system. The results show that Al atoms alter the reaction mechanism of AP thermal decomposition, significantly decreasing the activation energy of AP decomposition at high temperature but increasing that at low temperature. Meanwhile, the temperature-dependent rate constant of each basic reaction was calculated by transition state theory. The rate constants increase with temperature. Under high temperature and pressure, Al can increase the high-temperature decomposition rate of AP by up to 1-3 orders of magnitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.