Abstract
The detailed mechanism by which ethylene polymerization is initiated by the inorganic Phillips catalyst (Cr/SiO2) without recourse to an alkylating cocatalyst remains one of the great unsolved mysteries of heterogeneous catalysis. Generation of the active catalyst starts with reduction of CrVI ions dispersed on silica. A lower oxidation state, generally accepted to be CrII, is required to activate ethylene to form an organoCr active site. In this work, a mesoporous, optically transparent monolith of CrVI/SiO2 was prepared using sol–gel chemistry in order to monitor the reduction process spectroscopically. Using in situ UV–vis spectroscopy, we observed a very clean, stepwise reduction by CO of CrVI first to CrIV, then to CrII. Both the intermediate and final states show XANES consistent with these oxidation state assignments, and aspects of their coordination environments were deduced from Raman and UV–vis spectroscopies. The intermediate CrIV sites are inactive toward ethylene at 80 °C. The CrII sites, wh...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.