Abstract
Nifedipine, a blocker of L-type Ca(2+)-channels, increased quantal content of endplate potentials in newly formed nerve-muscle synapses, while R 24571 (calmodulin inhibitor) and KN 62 (inhibitor of calmodulin-dependent kinase II) did not change it. KN 62 suppressed the increase in quantal content of endplate potentials evoked by nifedipine. Similar to nifedipine, chelerythrine and bisindolylmaleimide I (blockers of protein kinase C) increased quantal content of endplate potentials. In the presence of chelerythrine, nifedipine lost its ability to facilitate secretion of neurotransmitter. 4-Aminopyridine, a blocker of voltage-gated potassium channels, increased quantal content of endplate potentials. In the presence of chelerythrine, 4-aminopyridine induced no additional increase in the quantal content of endplate potentials. In its turn, chelerythrine induced no extra facilitation of secretion in the presence of 4-aminopyridine. It is hypothesized that Ca(2+)-dependent inhibition of secretion results from suppression of calmodulin-dependent kinase II and activation of protein kinase C, which potentiates the work of voltage-gated K(+)-channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.