Abstract
At present no antiviral agents are available for treatment of infection by the pathogenic poxvirus molluscum contagiosum virus (MCV). Here we report the identification and characterization of an inhibitor active against the virus-encoded type-1 topoisomerase, an enzyme likely to be required for MCV replication. We screened a library of marine extracts and natural products from microorganisms using MCV topoisomerase assays in vitro. The cyclic depsipeptide sansalvamide A was found to inhibit topoisomerase-catalyzed DNA relaxation. Sansalvamide A was inactive against two other DNA-modifying enzymes tested as a counterscreen. Assays of discrete steps in the topoisomerase reaction cycle revealed that sansalvamide A inhibited DNA binding and thereby covalent complex formation, but not resealing of a DNA nick in a preformed covalent complex. Sansalvamide A also inhibits DNA binding by the isolated catalytic domain, thereby specifying the part of the protein sensitive to sansalvamide A. These data specify the mechanism by which sansalvamide A inhibits MCV topoisomerase. Cyclic depsipeptides related to sansalvamide A represent a potentially promising chemical family for development of anti-MCV agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.