Abstract
Ge-on-Si(001) films are grown by molecular beam epitaxy via a three-step epitaxial growth method (Ge/Ge seed/GeSi buffer/Si(001)). The dislocation structure of the Ge/GeSi buffer interface is studied by high-resolution electron microscopy. Misfit dislocations on the interface are edge dislocations and are aligned regularly with a period of 9–10nm. A variety of atomic structures of the dislocation core is observed, known in the literature as dissociated or asymmetric Lomer edge dislocations. The assumption that atomic structures of various degrees of complexity are intermediate states in the formation of a perfect edge misfit dislocation in the course of plastic relaxation of a stressed film is justified. A model is proposed which explains the intermediate states in terms of statistical variation of the nucleation site of the complementary 60° dislocation which forms, together with the primary dislocation, a Lomer dislocation at the interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.