Abstract

Although histone deacetylase (HDAC) inhibitors are emerging as a promising new treatment strategy in malignancy, how they exert their effect on osteosarcoama cells is as yet unclear. This study was undertaken to investigate the underlying mechanism of a HDAC inhibitor Trichostatin A (TSA)-induced apoptosis in a osteosarcoma cell line HOS. We observed that TSA treatment decreased the viability of the cells and prominently increased acetylation of histone H3. Evidence was obtained indicating that TSA induced apoptosis of HOS cells as follows: (1) Generation of DNA fragmentation; (2) activation of procaspase-3; (3) cleavage of PARP; and (4) increase of DNA hypoploidy. The reduction of MMP and the release of cytochrome c to cytosol were also shown, indicating that TSA induces apoptosis in HOS cells in a histone acetylation- and mitochondria-dependent fashions. We also examined whether TSA can sensitize HOS cells to the action of an antitumor agent genistein. The combination therapy of TSA and genistein showed synergistic anticancer effect indicating that TSA can be considered as a novel therapeutic strategy for osteosarcoma not only from its direct apoptosis-inducing activity but also from the possibility of sensitization to other antitumor agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.